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The theory of co-ordinates r,, rb, with r b = max(r~, r2) and 1". = min(rl, rz) is developed to yield 
formal solutions for Schroedinger equations of helium theoretical chemistry. The correction for 
nuclear motion is included. Four most significant sets of terms in the ground state for the radial equation 
give a good approximation for the radial limit independently of the variation theorem. Thirteen most 
significant terms from the four sets are the basis for accurate variation calculations. A new radial 
limit is obtained. 

Es wird eine Theorie fiir die Koordinaten r, und r b (r b = max(r1, r2), 1", = min(r 1, ra) ) entwickelt, 
um formale L6sungen der Schr6dingergleichung yon heliumartigen Systemen zu erhalten. Die Kern- 
bewegung wird durch eine Korrektur berticksichtigt. Vier sehr wichtige Termgruppen des Grund- 
zustandes evgeben im Falle der Radialgleichung eine gute N~iherung fiir das Grenzverhalten, und 
zwar unabNingig vom Variationstheorem. Dreizehn sehr wichtige Terme aus den erw~ihnten vier 
Termgruppen bilden die Grundlage fiir exakte Variationsrechnungen. 

1. Introduction 

We develop the theory of co-ordinates ra, r b with r b = max(r 1, r2) and r a = min 
(rt, r2). This is done to yield formal solutions for Schroedinger equations of 
helium theoretical chemistry. 

An atomic model is introduced in Section 2. This treats electron correlation 
and by inspection has advantages over more conventional treatments. The work 
described in this paper is the simplest application of the model. The model is 
fundamental enough to produce series solutions for radial and angular correlation. 

The difficulties of using co-ordinates ra, rb, have been mentioned in the literature 
[-1-3]. The behaviour of functions in r~, rb, to operators O/~ri, (~2/Or{, (i = 1, 2), 
operating in singular space defined by r = rl = r2, is of special interest. This is 
because of the possible discontinuity in the first derivatives of such functions. 
In the general case the first and second derivatives of f ( r , ,  rb) are undefined in 
singular space. Because the Hamil tonian operator contains ~(~2/(~r2, ( i--1,  2), 
the basis for treatment of such functions becomes important.  

In Section 4 we derive expansions in rl, r2, for functions f ( r , ,  rb). We compare 
the operand behaviour of functions f ( r , ,  rb) and their expansions in rl, r 2. It is 
demonstrated that the discontinuities in the first derivatives of f ( ra ,  rb) exist in 
the first derivatives of the expansions. The second derivatives of f ( r , ,  rb) in singular 
space are infinite and undefinable. It is shown that the second derivatives of the 
corresponding expansions gives a divergent series for singular space. Therefore 
f (r~,  rb) is not analytically equivalent to its expansion in r l , r  2. 02/~?rZ.f(r~, rb) 
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is undefined in singular space and is to be correlated with a divergent expansion 
in rl, r 2. 

The idea of variation calculations for the radial limit is considered in Sec- 
tions 5, 6. Simulation functions ~pof(r,, rb) are defined where ~Po is the Kellner 
function from (7). These functions are outside the Domain of H. Nevertheless 
they can be used successfully in variation calculations. This is because functions 
~pof(ra, rb) can be expanded in rl, rz. Every term in the expansion is in the Domain 
of H. Despite the analytical differences between ~of(r,,, rb) and the expansions, 
the former can be used for the latter in the calculation of matrix elements provided 
delta functions are used. More general simulation functions are derived. 

A further boundary condition is developed in Section 7. This is that the 
discontinuities in the first derivatives of all terms ~o Cp,qrP/rg in a function should 
cancel. The constants Cp,q may be adjusted for this condition. These functions 
are no longer simulation functions. They come into the Domain of H. 

The coefficients Cp,q can be sorted into sets according to the value of p - q .  
The four most significant sets correspond to values 0, l, 2, 3. A recursion formula is 
developed in Section 8 for these four most significant sets of coefficients in the 
series solution of the ground state for the radial Schroedinger equation. The 
estimate of the eigenvalue obtained from these coefficients is -2 .8788 H. This 
result is accurate to 9 parts in 105 and is independent of the variation theorem. 

The series from the recursion formula and boundary conditions fails to 
continue to the fifth most significant set of coefficients while remaining in the 
Domain of H. The unique way out of this difficulty is to make the series more 

P q =>0. general with a typical t e r m  lj)oCp,q,jra/rb.(log rb)J.j Cp,q,j = 0 when p - q  < 4j. 
In Section 9 Kato's cusp theorems are discussed. The cusp relation at the 

nucleus is shown to follow from the recursion formulae in Section 8. Some dif- 
ficulty arises when H is defined in rl, rE, COS 0, and 0.5 tpor12 is regarded as part 
of the solution to helium when r12 = 0. r12 is better replaced by its expansion in 
r~, rb, Pl(cos 0). 

In Section 10 terms are obtained for the ground state of the SP and Complete 
Schroedinger equations. The latter shows the correct cusp behaviour when r12 
tends to zero. From a consideration of the need for logarithmic terms similar 
to that in Section 8 an analytical form is produced for angular as well as radial 
correlation. Recursion formulae are produced for the formal solutions to the 
SP, SPD and Complete Schroedinger equations defined in Section 3. Coefficients 
from the Complete equation are corrected for the motion of the nucleus in Sec- 
tion 12. The correction though a small one does enable the series solution for 
the helium three body problem. 

Successful and economic variation results are described in Section 11. The 
thirteen most significant terms of the solution to the radial Schroedinger equation 
are implemented variationally. This calculation produces a new radial limit of 
- 2.879,028,59 H. 

2. An Atomic Model 

Instead of a conventional model wave function: 

~p~et{1 + ag(r l, r2, r3...cos 012, COS 013.. ")} (1) 
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we propose: 
~)get { 1 + f(r~, rb, re.. .  cos Oab, COS 0,c...)} (2) 

with r, < rb < re... and 0 u the angle between ri and rj. ~pget is a variational form of 
the determinantal solution from the appropriate zero order problem. This problem 
is that of non-interacting electrons moving in a central field. A single variation 
constant is envisaged which is the single exponential constant, f and 9 are func- 
tions not usually symmetrical to the interchange of subscripts. ~ is the corre- 
sponding symmetrising operator, f is a more flexible form than ag.  If a particular 
case of f is symmetrical to the interchange of subscripts it is identical to a particular 
case a9. More generally the symmetrising operator must not be included in (2). 
This is because any f is intrinsically symmetrical in rl, r 2. f has the advantage 
of yielding functions which are shown to require an infinite series of functions a9. 

Electron zoning has been introduced in (2) precisely and compactly by using 
co-ordinates which are useful for the expression of the interelectron potential 
operator. Our present concern is with the small set of co-ordinates r,, r b, O,b. 
These are co-ordinates for the helium problem. 

3. Basic Definitions and Results in the Hel ium Problem 

The Hamiltonian operator in the zero order helium problem is: 

H ~ = - 1/2.1712 - 1/2. Vz2 - 2 /r  1 - 2 / r  2 (3) 

if operands to H ~ are expressed in the form s C~ (radial part)z-Pl (cos0) with 
0 = 012 = Oab in (1), (2) then ~2 is conveniently replaced by: 

+ 2/r . - t ( t  + (4) 

H' the interelectron potential operator is usually taken as first order to H ~ 
This is here defined as: 

0,oo 

H ' =  ~ r~/r~+l .Pf fcosO);  r, = min(q,  r2); rb = max(r1, r2); (5) 
z 

The series in (5) has the following properties: 
i) absolute convergence for all parts of space r b > r,. 

ii) uniform convergence for any closed part of space with r b > ra. 

iii) convergence for any part of space wi{h r b = r,, Icos 0[ < 1. 
We are to use the series in (5) to form the Hamiltonian operator H = H ~ + H'. 

The resulting Schroedinger equation is to be solved formally. Intermediate 
Schroedinger equations are defined for formal solution. These are the S, SP, 
SPD .... Schroedinger equations as H'  in H is expanded to the first, second, 
third.. . ,  term. The Schroedinger equation for the complete expansion of H' is 
called the Complete Schroedinger equation. 

H'  fails to converge when r a = r b = r, cos 0 = - 1. The series oscillates between 
0 and 1/r instead of giving 1/(2r). If this difficulty prevents the numerical processing 
for any series solution for helium, (5) could be replaced by (5a). 

0,n 
I l+  H , = Z r a / r  b 1.p,(cos0) + ,+1 +2 1/2.ra /~  .P,+,(cos0) (5a) 

l n- -+  O0 
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As n increases from zero to infinity H'  is always 1/(2r) when r. = rb, cos 0 = - 1. 
It will be shown in Section 10 that one important series of terms in the helium 
eigenfunction is given correctly when (5) is used. This is true when r. = rb, 
cos 0 = - 1. It seems probable therefore that (5a) will never need to be substituted 
for (5). 

As the electrons approach the same point H'  tends to infinity. When the 
electrons occupy the same point the series for H'  diverges. This divergence may 
be associated with the natural infinity of 1/r12. If 7 s is a series solution such that 
(H~  H')~u = E ku, then the result of (H~  H' )7  s leads to a cancellation of the 
terms of H'  7 s. This is true when the separation of the electrons is infinitesmal. 
When the separation is zero H ' 7  s becomes undefined but ( H ~  H')7/  may be 
defined by a continuity argument. 

No practical difficulty appears to arise from the use of H'  if 7, can be deduced. 
The solutions to the zero order problem defined in (3) form an incomplete 

set of square integrable orthonormal functions, the pth element of which is ~pO. 
The inclusion of the functions from the continuum makes the set complete. The 
configuration interaction method for helium uses trial wave functions: 

Z Cp ~po (6) 

For the singlet ground state of helium the space spin Kellner variation form 
is used for ~p~et with the space part given in (7). 

~Po = exp{ - ~(r a + rz) } (7) 

Because of the interelectron energy the average potential energy for helium is 
less negative than in the zero order problem. It follows from the virial theorem 
that the average kinetic energy of the former is less positive. If we regard ~ as a 
variation constant in the context of (7), (1) or (2), the average kinetic energy is 
reduced by reducing ~ from 2. Further it is often convenient to give ~ the value of 
minus the sequare root of the eigenvalue. Under this condition the functions 
in (7), (1), and (2) have the proper operand behaviour to H ( =  H ~ + H') when both 
electrons are at infinity. ~Po is an eigenfunction of H ~ only if ~ = 2. 

A set of square integrable functions with the ith element ~p~ is said to be in 
the Domain of H if all H~p~ are square integrable and the relationship between 
matrix elements in (8) is satisfied. 

~. ~PiH~Pj dz = ~ ~jH~p i d'r (8) 

~p~ and H~pz are well formed in Hilbert space. The Ritz variation principle may 
be applied to functions in the Domain of H. It follows that: 

, ( ~ c ? p ~ ) H ( ~ c ~ p , ) d z / , ( ~ c , ~ p O 2 d r  >Eo (9) 

where E o is the ground state eigenvalue of the system defined in H. The constants cz 
can be varied to produce a minimum value for the left hand side of (9). If the 
functions ~p~ form a complete set then the left hand side of (9) tends to E o if the 
constants e i are optimised and n tends to infinity. 

It is noteworthy that ~Po is in the Domain of H but H~Po is not. It is not un- 
expected therefore that ~(HqJo)H(H~po)dr is indeterminately large and negative. 
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4. The Operand Behaviour o f f ( r . ,  rb) 

Let us consider the simple cases of fx = rE, f2 = 1/rb : 

r <r2 = 2ra ; c?f l / t3raq >r2 = 0 ; 
(10) 

c?f2/t3rl,.j <r2 = 0; t?f2/c?rlq >r2 = --  1/rg ; 

We see that  the first derivatives of f l ,  f2, are discontinuous when r 1 = r 2. Fur ther  
differentiation at the discontinuity is undefined. Because first and second deriva- 
tives of ~'2, and 1/r b are not  analytic in the space r x = r 2 we call this space singular 
space. 

Three results are stated and then demonstrated.  
i) Any cont inuous function fj(r,,  rb) in (2) may  in general be expanded as an 

infinite series of terms. These terms are symmetrical  in rl,  r 2. Fur ther  the first and 
second derivates of these terms with respect to rl,  r2, are analytic. So we write: 

fj(ra' rb)= 2 Ck,JZk,j(rl, t'2) (1 la)  
k 

ii) The  equality: 
Q/c?r i. f~(r~, rb) = c~/c3r i �9 2 Ck, jZk , j ( r l  , r2) (1 lb) 

k 

with i =  1 or 2, holds for all functions f j  and ZkO from ( l la ) .  This is so for all of  
space including what  is singular space when rt = r E. If the left hand  side of (11b) 
is discontinuous when r I = r E then also is the right hand side. 

(iii) The  inequality:  

6~2 / ~r2 " f j(r a, rb) ~ 632/c~r2" 2 Ck,j Xk,j(r l, r2) (11 c) 
k 

holds where the left hand  and right hand sides of (1 lb) are discontinuous. At any 
discontinuity f rom ( l lb) ,  the right hand of (11c) diverges while the left hand 
side of (11c) cannot  be formed. 

The  results in (11) are demonst ra ted  by compar ing  two expansions for 1/rt2 , 
(5) and (12). 

1/r12 = (1 + 1/2. ~ cos 0 + 1/2.3/4.4 2 cos 2 0.. .)  (r E + r E)- 1/2 
with (12) 

4 = 2r l  rE/(r  2 + r 2) 

Our  interest is to rewrite (12) in Legendre harmonics.  To do this we expand 
cos"0  in Legendre harmonics.  By compar ing the I th harmonic  parts of (5) and the 
re-expansion of(12), we obtain a series for t ,  l+ 1 r j r  b in rl,  r2, ~. For  1 = 0 we have (13). 

1/r  b = (1 + 1/2.3/4.1/3.  (2 + 1/2.3/4.5/6.7/8-  1/5. ~4 + . . . )  (r 2 + r2 2)- 1/2 (13) 

For tuna te ly  the series in (13) converges absolutely for all 4; 4 = 1. Thus the 
result in ( l l a )  is proved for the part icular  case: f ( r , ,  rb)= 1/r  b. 

We compare  the operand behaviour  of the two sides of (13) to (?/ar~ with 
i =  1 or 2. We obtain (14) from the right hand  side of(13) by operat ing with t?/& 1. 

- {1 + 1 /2 .3 /4 .1 /3- (  2 -4- 1 /2 .3 /4 .5 /6 .7 /8 .1 /5 -44+  ...} ra(r  ~ +r2)  -3/2 (14) 

+ 2{1/2 .3 /4 .2 /3 .4  + 1/2 .3 /4 .5 /6 .7 /8 .4 /5 .43 + . . - }  rz(r 2 - r 0  (rl + r2) 

�9 + 
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The series factor of the second term in (14) tends to infinity as ~ approaches 1. 
The binomial expansion of 1/2-(1 _ ~ ) - 1 / 2 _  1/2.(1 + 0  -1/2 tends to infinity in 
the same way. In the limit the series factor can be replaced by 1/2(1-  0 -1/2. 
Let us consider an interval Ar = r 2 - r  1 which is very small so that r 2 and r~ are 
considered to approach r. In the limit (14) converges to (t5). 

- 1/2.1/r 2 + 1/2.1/r 2 .Ar/[Ar[ (15) 

(15) shows just the discontinuous behaviour shown by c~/~rx(1/rb) in (10). Thus 
the result in (t l b) is justified for the particular case: f ( r , ,  rb)= 1/rb. 

We may repeat the analysis for l >  0 in any ~" z+ a ra/r b from before (13). More 
generally series may be obtained for f(ra, rb). This justifies the results in (11a) 
and (llb). For example the series for r, may be obtained by multiplying the 
right hand side of (13) by rar 2 and that for rb may be obtained by using: 

r b -~ r 1 + r 2 -- r a �9 

The second derivative of (13) with respect to r I is the first derivative of (14). 
The factor ( r a -  rx) in the second term of (14) prevents the series from diverging 
when r 1 = r2. The differentiation of the factor (r 2 - r l )  will cause the second 
derivative of (13) to diverge when r~ = r 2. This divergence in general is to be 
correlated with the undefined first derivative of a discontinuity. The result in 
(11 c) is justified. 

5. Variation Calculations, Dirac Delta Functions, The Finite Contribution 
to Matrix Elements from Singular Space of Zero Volume and Simulation 

We consider the terms of the series in (15) as a basis for variation calculations. 

0 , ~ 3  - -  oO,p  0 , o 0  

~Po ~ ~ Z Cp,q,zr'a/r~.Pt(cosO) (16) 
P q ! 

The Hylteraas expansion can be re-expanded in terms which are a subset of those 
in (16). The functions in the Hylleraas expansion have been shown to be complete 
[4]. Therefore the functions in (16) are complete. So are the functions in (17). 

0 , ~  --  oO,p  

~Po Z Z Cp,qr~/r~. (17) 
P q 

Our interest is firstly to implement (17) variationally to estimate the radial limit 
and secondly to find the series solution for the S-equation defined after (5). There 
are two difficulties however. 

i) Because of (11 c) and the second derivative in (4) the functions ~P0 r~/r~ are 
not the same operators to H as their expansions in (18). 

Ipor~/r~, = ~Po ~ Ck,jZk,i(r l, r2). (18) 
k 

The calculation of the left hand side of (19) presents difficulties. 

1 lpor~/r~,'H~Por~'/r~"dz = Z Z Ck,jCk',j, ~ ~POZk,jH~PoZk',j" d z .  (19) 
k k' 
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The evaluation of the right hand side of (19) presents no such difficulties. 
p q ii) We shall see that functions ~Por./r b are not in the Domain of H. 

However if we find some way of evaluating matrix elements such that the 
matrix relationships in (20) and (21) are satisfied we conclude that functions 

P q ~Por./rb simulate functions ~po~CkdZk,j(rl, r2) for the evaluation of matrix 
k 

elements provided that the functions ~Po Zk,j are in the Domain of H. 

~2o H~Po rP/rZ dz = ~ ~2o r~/rZ H~Po dz ,  (20) 
p, q' p q 

~por./r b .H~porJr b dz ~ P q v' q' = ~Pora/rb.H~Por./r b dz .  (21) 

If all relevent cases of (20) and (21) hold and all corresponding functions lPOZk,i 
are in the Domain of H it follows from after (9) that the Ritz variation method 
can be used with (17). 

Dirac b-functions [5] are used for the evaluation of the unexpanded matrix 
elements in (20), (21). From (3), (4) we consider 

1/2. ~Po ~/~rl(rP/r~), 1/2.~o o ~2/gr2(rP/r~) 

for a fixed value of r2. The first derivative term shows the discontinuity in (22) 
when r 1 = r 2. 

a ,  = - 1/2. (p + q) r~ -q-  1 [~o]r, =,2" (22) 

Therefore over this singular space of zero volume the second derivative is infinite. 
The integration of the second derivative term over singular space can be redis- 
tributed over r 1 space. The result is given in (23). 

p, q 'rZA,b(rl  r2)dr I [lpO']r,=rzrl~'-q'+Z A1 ~or . / r  b - = (23) 
0 

b(r 1 - rE)  is a b-function. It has the value zero for all values of r~ except where 
r 1 = r E. 3 ( r ~ -  r2) then becomes indeterminately large. We integrate the right 
hand side of (23) for all values of r 2. The contribution to the left hand side of 
(21) from the total singular space is: 

(P + q) ~ [~P2],1 = r ~  r12 +p'-q-q'+3 dr2. (24) 
0 

With the aid of &functions we can evaluate the integrals in (20), (21). However 
there is no way of evaluating (25). From this follows (ii) after (19). 

[H~or~/r~] 2 dz (25) 

6. Acceptable Terms lPor~/r ~ for the Ritz Variation Method and 
Successful Simulation 

From Section 5 we require the ranges for integers p and q for which the matrix 
relations in (20), (21) hold and all corresponding functions tOOZk, j are in the 
Domain of H. The contributions to matrix elements from singular space are 
calculated according to Section 5. We now state the result for a basis set from (17) 
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to form a valid wave function. The sufficient conditions for all p and q are: 

q - p < O  ; p > 0 ;  (26) 

Given (26) we draw conclusions. 
(i) With "simulation" defined before (20), the series in (17) successfully "simu- 

lates" its expansion according to (18) for the evaluation of matrix elements. This 
expansion is the proper wave furiction. The terms of (17) are simulation functions. 

(ii) The treatment of singularities in Section 5 is successful and effectively 
treats the divergence from the right hand side of (11c). 

We now sketch the derivation of (26). From (13) it follows that infinitely many 
functions I~O)~k, j for any value j in ( l la)  are of the form lPo(rlr2)rn/(rZ+rZ) n/2. 
For these functions to be in the Domain of H it is necessary and sufficient for 
m - n __> 0. It follows that: 

p - q __> 0. (27) 

A generalisation of (27) is that ~pof(r,, rb) must not tend to infinity near r~ = r2 = 0. 
The second consideration is the effect of the indices p, q, p', q', on the matrix 
relations (20), (2l). We need only consider the Laplacian parts of H in (28). 

- 1/2. ~ rP'/r q'. ~Po(V 2 + V 2) ForP/~ dz .  (28) 

All contributions to (28) are first considered excluding those from singular space 
examined in Section 5. From (7), (3) and (4) with l =  0, we represent (28) as: 

- ~ e x p ( -  2~r2)rV+p'+2dr2 S e x p ( -  (rO/r  q ' - l .  t~2/~r 2 {exp(-  ~rl)/r q - '  } drl 
0 0 

r l (29) 
- ~ e x p ( -  2(rl)/r~ +q'-2 dr,  I e x p ( -  (r2)rP2 '+ ' .  (32/gr2 {exp(-  (r2)r~ +~ } dr 2 . 

0 0 

The integration of (29) by parts gives: 
oo 

- ~ e x p ( -  2~r2)r p+v'+ 2 dr a [ 2 e x p ( -  (r l ) /r] ' -  1. ~?/t?r, {exp( -  (rO/r  ~- 1}] 
0 

oo oo 

+ ~ e x p ( -  2~r2)r~ +p'+ z dr z ~ 0/0r, {exp( -  (rO/rql ' -  t}. t~/~r 1 {exp(-  (r , ) /r~-  '} drl 
0 r2 

o~ 

- ~exp(-2~rO/rql+q' -Zdrl[~dexp(-~rz)r~ '+l .~?/ t?r2{exp(-~r2)rV+'}]  (30) 
0 

oo r 1 

+ ~ e x p ( -  2 ( r 0 r  q+q'- 2 dr 1 ~ ~?/t?r 2 {exp( -  ~r2) r p'+ 1}- ~/c~r 2 {exp(-  ~r2) r~ + 1 } dr2. 
0 0 

We consider the single integral terms in (30) which are unsymmetrical in index 
pairs pp' and qq'. If and only if p + p' = 0, these unsymmetrical terms can be 
combined together to give: 

- (p + q) ~ e x p ( -  4(r l)  r~ +v' -q-q'+ 3 dr1,  (31) 
0 

p + p' > 0 (32) 
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We add the remaining contribution to (28) which is (24). This if (32) holds, the 
result from (28) is symmetrical in pp' and qq'. In the evaluation of all matrix 
elements for a variation calculation using (17), the same values occur for p as 
for p'. p and p' must have the same minimum value. Therefore p > 0. (26) is derived. 
From (26) it follows that the integrands in (30) tend to zero near rl = r 2 = 0. 
Because of (26) all terms in (17) are simulation functions. These make a complete 
set. 

It is of interest to compare the expansions of tpor,/rb and tporb/r, according 
to (18). From (26) ~Por,/rb is a simulation function and must yield terms all in the 
Domain of H. Forb/r ~ is not a simulation function and must yield at least one 
term not in the Domain of H. The condition that the matrix relation in (8) is 
satisfied with ~pj = ~Po is: 

lPork t~/t~rk(lpirk)[rk = o ,~  = lPirk O/(~rk(lPOrk)lrk=O,oo = 0 (33) 

with k = 1, 2. 
Squaring the series in (13) and multiplying each term by lporlr 2 we obtain 

the expansion of lpora/r  b. All terms satisfy ~Pl in (33). Now considering lPora/rb 
we have (34). 

lPorb/r a = l P o r l / r  2 + lpor2 / r  1 - -  (the terms for IPora/rb).  (34) 

According to (33) the first two terms on the right hand side of (34) are not in the 
Domain of H. 

Finally we consider just what functions ~p(ra, rb) are valid simulation functions. 
By arguments similar to those used for the condition for p in (26) we obtain an 
analogue to (33) for functions ~P(ra, rb) which are continuous and square integrable. 
This analogue is (35). 

~Pora(? /Or .{r .w(r . ,  rb)}lr .= 0 = ~p(r,, rb) r,~?/Ora{~por,}[ro= o = 0,  (35a) 

lPorbC?/~rb{rb~(r~, rb)}[rb = o0 = tp(r,, rb) rbC?/c~rb{~Porb}lrb= oo = 0. (35b) 

The similarity between (33) and (35) means that simulation functions can be 
generated by taking any unsymmetrical function in rl, r2, which is in the Domain 
of H and substituting r,, r b for rl, r2 or r2, r 1. 

A second sort of simulation function can be formed from (35). This is of the 
general type f ( r , ,  rb)exp(--~rb) .  The simplest example is exp(--(rb). We note 
that exp(-~ra)  is not acceptable according to (35). This function is not even 
square integrable. 

7. Two Different Types of Model Wave Functions 

The first derivatives of the terms in (17) have discontinuities in singular space. 
These discontinuities have been characterised in Section 4, 5. It is critical to 
distinguish two types of functions (17) for which the conditions in (26) hold. 
This is done according to the sum of the discontinuities. The two different types 
of functions are referred to as functions of the First Type and functions of the 
Second Type. 



104 F.T. Newman: 

(i) We define a function of the First Type. For such a function the discon- 
tinuities from the operation of ~/gri, (i = 1, 2), on all terms sum to zero in all 
singular space. 

(ii) For a function of the Second Type the discontinuities do not sum to zero 
in all singular space. 

Because of (26) we write (17) in the form: 

0,~:~ O,co 

~Po 2 Z Cm,m-, r~/r'~-" (36) 
n m 

The condition for (36) to represent a general form of the First Type is (37) for 
all the values of n in (36). 

0,oo 

E (2m - n) C,,,m_ . = 0 (37) 
m 

There are three results for functions of the First Type which do not extend 
to functions of the Second Type. 

(i) ~Po t?2/(?r2"fj(ra, rb)= ~0 ~2/8r~" ~ Ck,jZk,;(r~, "2); c.f. (1 lC) 
k 

(38) 

The result in (38) holds even for singular space. The first derivatives of f(ra, rb) 
are no longer discontinuous. If both sides of (38) are undefined because of dis- 
continuities they contain what is the same discontinuity. This occurs in a similar 
way to the result in (15). 

(ii) ~pof(r,, rb) is now in the Domain of H {c.f. (25)}. Matrix elements are 
evaluated without the use of 6-functions. From the definition of simulation 
functions after (26), ~vof(ra, rb) is no longer merely a simulation function. In general 
it may be assumed to be analytically equivalent to ~Po ~ Ck,~gk,i(rl, r2) for the 

k 
evaluation of matrix elements. 

(iii) tpo ~ 82/~rZ.f(r , ,  rb), (i = 1, 2), is analytically defined for a function of 
i 

the First Type. This is because any undefined part is proportional to A r/[Arl 
-Ar /]Ar]  = 0 ;  c.f. (15). 

It follows from the discussion in this section that any formal solution to a 
Schroedinger equation will be a function of the First Type. This is because the 
eigenfunctions of H are in the Domain of H. Similarly any complete model 
wave function of the Second Type will tend towards a function of the First Type. 

8. The Series Solution for the Ground State of the Radial Helium 
Schroedinger Equation 

We consider the radial helium Schroedinger equation and derive early sets 
of terms in the series solution for the ground state. These are processed to give 
an estimate of the eigenvalue. This estimate for what is the radial limit is inde- 
pendent of the variation theorem. From (3), (4) and after (5) the equation is: 

(H ~ + 1/rb - Eo) ~Po = 0 (39) 
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We obta in  a recursion formula.  F r o m  this and bounda ry  condit ions we produce  
the four mos t  significant sets of te rms in the series solution. This approach  fails 
to produce  later sets of  terms. F r o m  this failure we are able to deduce the general 
form of the formal  solution. This  includes logar i thmic  terms. 

The recursion formula  used for the part ial  solut ion of (39) is simple. To  obta in  
it we take 7% f rom the complete  expansion in (17). The  corresponding recursion 
formula  is: 

p(p + 1) Cp,q + (q - 2) (q - 3) Cp_ 2,q- a 

= - 2 { 1  + ~ ( q -  2)} Cp_2,q_ , + 2 { p ~ -  2} Cp_l, q (40) 

- -  2(~  2 + Eo) Cp_ 2,q 

Suppose  p - q  = n. Fo r  smaller  values of  p - q  all Cp,q have been determined.  
We are to use (40) to determine all Cp,q with the same value of n. When  p = n + 2, 
n + 3, then Cp,q is ob ta ined  in terms of a l ready determined coefficients with 
p - q = n - 1 and n - 2. When  p > n + 3 then a non  zero already determined te rm 
(q - 2) (q - 3) Cp_ 2,q- 2, with p - q = n, contr ibutes  to the left hand  side of (40), 
F r o m  (26) we have the result: 

Cp,q=O for p < 0  or q > p  (41) 

When  p = 0 bo th  sides of  (40) are zero. When  p < n + 2 and odd  Cp,~ can be deter- 
mined in a similar way to te rms p > n + 2. Fo r  p < n + 2 and even there results 
a set of  m consistent  s imul taneous  equations,  m is given in (42): 

m = integer par t  {(n + 1)/2} (42) 

The  s imul taneous  equat ions  have m + 1 coefficients Cp,q, with p - q  = n, to be 
determined.  Therefore  an extra  equat ion  is needed. This derives f rom Section 7. 
The series solut ion must  be a function of the First  Type  in the D o m a i n  of H. 
So f rom (37) we obtain:  

0,m 0,m 

Z (4p - n) Czp,zp_ . = - ~ (4p + 2 - n) Czp + 1,2p+ 1 - ,  
P P 

2m+ 2,~ (43) 
-- ~ ( 2 p - n )  Cp,p_,; n # O  

P 

F r o m  (40) the evaluat ion of Eo is necessary for the solution of g o  in (39). 
The considera t ion is of an app rox ima t ion  to 7% made  f rom a series of  mos t  
significant sets of  terms. Each set cor responds  to a par t icular  value of n. An 
app rox ima t ion  to the eigenvalue is E~. The  cor responding  approx ima te  eigen- 
function is 7%. E~ is ob ta ined  by successive approx imat ions  in (44). 

E'o = ~ 7J'o(H ~ + 1/rb) Wodz/~ ~P'o ~Po dr (44) 

We indicate the de te rmina t ion  of the four mos t  significant sets of coefficients 
in (40) and  (43). These cor respond  to n = 0, 1, 2, 3. 

Cp,p = 0 for p > 0. Co, o is unde te rmined  in (43) and  is arbi t rar i ly  given the 
value unity: Co, o = 1. 

F r o m  all Cp,p_ 1 we obta in  just  three non-zero  coefficients: 

C 2 , 1  = 1/6, C 1 ,  0 = ~ - -  2, Co, -  1 = ~ - 1.5 (45) 
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F rom all Cp,v_ z we obtain an infinite set of non-zero coefficients. We obtain: 
Cv,p- 2 = 0 for p > 5, p = odd, otherwise Cp, v_ 2 ~ 0 for p ~ O. Cp,p_ 3 r 0 for all 
values of p > 0. 

Values for E;  in (44) will depend on the selected value for ( in (7) and (40). 
We take ~ = ( -E 'o )  1/2. The result is an approximate  eigenvalue of -2 .8788  H. 
This result shows an error of 9 parts in 105. This value can be obtained with as 
few as 29 terms from (36) in (44). All matrix elements in (44) are simple off-diagonal 
matrix elements. The Ritz variation method requires diagonal matrix elements. 
The variational method favours the eigenvalue for a comparable eigenfunction. 
Nevertheless the 29 terms in (44) yield a comparable eigenvalue to a 15-term 
Ritz variation calculation [6]. The latter employs terms from a complete set of 
square integrable functions closely related to the functions in (6). The series 
calculation is shorter and simpler. 

Four  approximations to the eigenvalue can be obtained usefully from (36) 
and (44). These correspond to n = 0; n = 0, 1 ; n = 0, 1, 2; n = 0, 1, 2, 3. The approxi- 
mations are: 

- 2.8477, - 2.8689, - 2.8777, - 2.8788 H (46) 

The eigenvalue to five figures is - 2.8790 H. These results improve in the rations 
of 1:3:24:156. 

The simple method of series solution becomes more complex for n >4 .  
Whenever n is a multiple of 4 the m equations before (42) can be combined together 
to give the left hand side of (43). This makes the m + 1 equations needed for the 
simple solution inconsistent. The m equations give an infinite set of solutions. 

0,o0 
p p-n (43) can no longer be used to select the set which puts the terms ~v 0 ~ C.,v_ .r . / r  b 

P 

in the Domain  of H. Despite the completeness of (17) it becomes necessary to 
introduce logarithmic terms. 

We require an auxiliary series to (36) to be able to remove the discontinuity 
in first derivatives when n = 4. Such a series must differ in form from (36) and yet 
give terms of the sort in (36) on differentiating with respect to r i, (i = 1 or 2). 
The form must be logarithmic and is: 

4 , 0  0 , ~  

~Po Z ~ Cp,p-. , lrP./r~-"'l~ (47) 
n p 

From (47) and considerations similar to those which lead to (26), we obtain 
(48) with j = 1. (40) is replaced by (49). 

Cp,p_., i=O for p < 0  or n < 4 j .  (48) 

p(p + 1) Cv,v_. j  + (p - n - 2) (p - n - 3) Cp_2,p_n_2, j 

= - 2 { 1 + ~(p - n - 2)} Cp_ 2 , v - . -  Lj + 2 ( p (  - 2) C v _  ~ , p _ . 4  

- 2(ff 2 + Eo)  C v _  2 , v - . , j  + 2 ( ( ]  + 1) C p _  2 ,p-  n -  1,j+ 1 (49)  

+ (] + 1) (2p -- 2n -- 5) Cv_2,e_ ,_z j+ ,  

- q +  1)( ]+2)  Cp_2,p_n_2,j+ 1 
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Cp,q from (40) corresponds to Cp,q, 0 in (48), (49), (50). (43) is replaced by (50). 

O,m O,m 

(4p - n) C2p,2p_n, j = -- 2 (4p + 2 - n) C2p + 1,2p+ 1-n,j 
p v (50) 

2m+ 2,oo O,oo 

- Z (2p - n) Cp. v_. , j  + (j + 1) Z Cp,p-,,J+I 
p p 

When j = 1 and n = 4 the right hand sides of (49) and (50) are zero. This means 
that (49) and (50) are interdependent but consistent. Both equations are satisfied 
by whatever value may be chosen for say Co_4,1. W h en j  = 0, n = 4, (49) and (50) 
can be made consistent by adjusting the value of Co,-4,~. (49), (50) become in- 
consistent when n is a multiple of 4 (n > 8) a n d j  = 0 unless Co,_,, 1 is adjusted to 
make these consistent. When n = 8, j = 1 (49), (50) are again inconsistent unless 
an auxiliary series from n = 8 with j = 2 is started. The total requirement is for 
the triple series in (51). 

0,oo 4j, oo 0 ,~  
p p-n. tPO Z ~ 2 Cp,p-n,j ra/rb ( log  rb) j (51)  

j n p 

There is a remaining problem. C2,_2 ,0 ,  C2 ,_6 ,0 ,  C2_ lO,O, etc. for example remain 
undetermined. This will be treated in a subsequent paper. The functions in (17) 
are in fact overcomplete. The terms corresponding to the undetermined coefficients 
can be removed from (17). The resultant functions still form an overcomplete set. 

9. Cusp Behaviour in the Ground State Solutions of Helium 
Schroedinger Equations 

The cusp behaviour of ~o from (39) in the limit of r a tending to zero is known 
to be: 

1 / 7 % . ( ~ o / a r a ) =  - 2  ; ra--~O ; (52) 

From (17) and (52) we obtain the following recursion formula: 

(2 - ~) Co,~ + c l , q  = 0 (53) 

The relationship in (53) is also obtained from (40), (41). This proves (52) for any 
series from (40), (41). (48), (49) produce the analogous result. The correct cusp 
behaviour at the origin can be shown similarly for the series generated in Sec- 
tion 10. 

We now consider the ground state solution ~ of the Complete Schroedinger 
equation for helium defined after (5). We have: 

(H ~ + n '  - Eo) kg = 0 ; c.f. (39) (54) 

In particular we consider the cusp behaviour of ~ as r12 tends to zero. The cusp 
theorem first formally stated by Kato can be written: 

~ -1 (0~ /~r12)=0 .5  ; r 1 2 ~ 0 ;  (55) 
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F r o m  (55) it follows [7] that  when r12 tends to zero T contains  r12 in the forms:  

exp(0.5 r~2)= 1 +0 .5  r12 + .... (56) 

The  result in (56) confirms the use of r12 as a useful co-ordinate  for the hel ium 
problem.  There  is a difficulty however.  It  is that  bo th  sides of (56) do not  show all 
the correct  proper t ies  when r12 = 0 .  F r o m  the right hand  side of (56) when 
cos 0 = 1, T will conta in  rb--r, .  7 j becomes  a radial  function of the Second 
Type  in Section 7. This is not  acceptable.  Let us consider  the expansion of r~2. 

O,co 
u = ~ [ 1 / ( 2 / +  3).rta+2/r~+l-1/(21 - 1).r~Jr t - l ]  P~(cos 0) (57) 

1 

Summing  the first l + 1 te rms of (57) we obta in  (58) when cos 0 = 1. 

rv - q + 1/(2l + 3). ?a + 2/r~+1 + 1/ (2 /+  1). r~ + 1/r~ (58) 

As l tends to infinity the te rms in l become  zero. u is identical to r12. On  taking 
radial  derivatives however  the te rms in 1 cont r ibute  to ?/Ori, (i = 1, 2), when rl  = r2 
and I tends to infinity. The  radial  derivatives of the expansion are non-uni formly  
convergent  near  rl  = r2 when cos0  = 1. Because of this 7 / c o n t a i n s  0.5 u and is 
still a radial  funct ion of the First  Type  when cos 0 = 1. T will then have the correct  
cusp behav iour  as r12 approaches  zero. 

Let  us consider  the opera t ion  8/8r 1 on 0.5 r12 and 0.5 u as these functions 
tend to zero and  actual ly equal  zero. 

0.5(Sr12/Sra)rl <r2 = - 0.5; 0"5(•rlz/#r1),, =,2 = undefined; 
(59) 

0"5(Srlz/~rl) . . . .  2 = 0.5 

0.5(~u/~r~)~2 : - 0 . 5 ;  0.5(Ou/~rOr~:~2 = 0 ;  
(60) 

0.5(~u/~3r1) . . . . .  = 0.5 

When  describing the proper t ies  of  7 j for r 1 = r2, cos 0 = 1, it is bet ter  to use 0.5 u 
ra ther  than  0.5 r~z. 

Given  the impor t ance  of 0.5 u we expect  to find terms f rom 0.5 u in any  series 
ob ta ined  f rom 7L This expecta t ion  is conf i rmed in Section 10. However  we 
obta in  f rom (45) and  before (45) the mos t  significant te rms in the solut ion of (39): 

~v o {1 + (~ - 2) ( r  a + rb) + 0 . 5 ( g  b + 1 / 3 .  r2/rb)} ( 61 )  

The third te rm of the right hand  factor  in (61) cor responds  to the te rm in (57) 
with 1 = 0. The  cons tant  0.5 is confirmed.  

10. The Formal Solutions for the Ground States of the SP, SPD, etc. 
and Complete Helium Schroedinger Equations 

The SP hel ium Schroedinger  equa t ion  is defined after (5). Fo r  this we use an 
ana logous  expression to (17). This  is: 

0,o0 0,o0 -- oo,p 

7'1=~Po ~ ~ Z Cp,q,~r',/rg.P,(cosO) (62) 
1 p q 
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The recursion formula analogous to (40) is: 

- (l - p) (l + p + 1) Cp,q,z = - 2 { 1 + ( ( q  - 2)} Cp_ 2,q- ~,z 

+ 2(p( - 2) Cp_ 1,q,t - 2(E1 + (2) Cp-2,q,t 

+ (l + q - 2) (l - q + 3) C p _ z , q _ 2 ,  t 

+ 21/(21 - 1). Cp_ a,q- 2:-  1 

+ 2(/+ 1)/(2/+ 3)- Cp_ 3.q- z,~ +1 

From (26) and (63) we have: 

Cp,q:=O for p < l  or q > p - l  

(63) 

(64) 

The analogue to (43) is: 

/+  1,oo 

C,,I_.,  ~ = - I / ( 2 / -  n). Z 
p 

(2p - n) Cp,p_,:; n ~ 21 (65) 

Using (63), (64) and (65) subsets of coefficients may be extracted. These correspond 
to the following values for l and n: 

l=0 ,  n = 0 ,  1 , 2 ; l = l , n = l ; l > 2 ,  n = i  (66) 

There are an infinite number of subsets in (66). There are however significant 
gaps because of difficulties similar to those which lead to (47). 

We concern ourselves with the three most significant subsets in (66). With 
these are no gaps. The subsets correspond to 1 = 0, n =0,  1 ; l --- 1, n = 1. We obtain 
the following non-zero terms: 

O,k 

~po{ l + ( ~ _ 2 ) ( r . + r b ) + 0 .  5 ~ 2 [ 1 / ( 2 / + . ,  1+2,1+1 1/(2/-- z l - l ]  3~'ra /rb -- 1).ra/r b .Pl(cos 0)} 
l 

(67) 

with k = 1. In the case of 7 ~ from (54) which is 7~o in the notation of (62) we obtain 
(67) with k = oo. From (57) this proves the cusp condition in (55) and (56) with 
the special singular properties in (60). 

Fock [8] has shown that the terms of (67) for ~ up to the linear terms are: 

1 - 2(r  I + r2) -/- 0 . 5  r 1 2  (68) 

These terms can be obtained from (67) by expanding ~Po from (7). This shows 
how the terms in (68) belong to a square integrable series. 

It is clear that the form in (62) is inadequate for the complete evaluation 
of 7~1, 5u2,..., ku .  When n = 21 (1 ~ 0), 21 + 4, 21 + 8, 21 + 12 etc. the combination 
of (63), (64), (65), gives sets of inconsistent simultaneous equations. It is necessary 
to find the analogue to (51) for total correlation including angular correlation. 
From arguments similar to those for (51) this is: 

0,oo 0,oo 2j,  oo l,oo 

~Po ~ ~ Z Z Ce,p-,,j:r~/rP-"'(logrb)J P~(cosO) (69) 
l j n p 
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The  analogue to (49) for the SP problem is: 

- (1 - p) (l + p + 1) Cp,p - . j , z  = - 2 { 1 + ((p  - n - 2)} Cp_ 2,p - . -  1,j,t 

+ 2(p( - 2) Cp_ 1,p-.,j, ,  - 2(E1 + (2) Cp_ 2,,-.,j,~ 

+ (l + p - n - 2) (l - p + n + 3) Cp _ 2 .p - . -  z,j,t 

+ 21 / (21 -  1). Cp_3,p_._ 2j,l_ 1 

+ 2 ( l +  1)/(2l + 3) '@-3,~- . -2a ,~+~ 

+ 2 ( ( / +  1) Cp_2,p_ ._  ~.j+ 1,1 

+ (j + 1) ( 2 p  - 2 n  - 5) C p _ 2 , p _ . _  2,~+ 1,t 

- ( ] +  1) (j + 2) C p _ z , p _ . _ 2 j + z , t  

(70) 

The analogue to (49) for the SPD problem is: 

- (l - p) (t + p + 1) Cp.p_.,j,z = {terms on the right hand  side of (70)} 

+ 3 ( / -  1)/(21- 3 ) . l / ( 2 1 -  1) Cp_4,p_n_3, j ,1_ 2 

+ 3{( l+  1)/(2/+ 1) . ( l+  1)/(2l + 3) 

+ I / (2 f+  t ) . 1 / ( 2 1 -  1 ) -  1/3} Cp-,, ,p-, ,-3, . i , t  

+ 3 ( /+  2) / (2/+ 5). (1 + 1)/(2/+ 3). Cp-4. ,v- , , -  3,j,~+ z 

(71) 

Recursion formulae like (71) can be built up for the evaluation of ~3, 714 etc. 
Fo r  ~u, (u > 3), we obtain (72): 

- ( l -  p) (1 + p + 1) Cp,p_.j,i = {terms on the right hand side of  (71)} 
(72) 

3,u O,v 

+ ( 2 l +  1) ~ ~ l l_v+ 2 . . . .  l C p - v , p - n - v - l , j , l - v + 2 w  
o w 

where 
1 

I.,b, c = ~ P.(X) Pb(x) Pc(x) d x  
- 1  

When u = oQ (72) yields the recursion formula for the complete Schroedinger  
equation.  (69) can be used to solve any of this infinite sequence of Schroedinger  
equations.  This confirms Fock 's  general conclusion [8, 9] that the formal solution 
of (54) contains logari thmic terms. 

The  analogue to (50) for  T 1, T2 etc. is: 

l, o0 l,oO 

(2p - n) C., ._. , i , ,  - (J + 1) ~ Co, p_.# +l,z = 0 (73) 
P P 

The opera t ion of (73) is similar to that  of (50). It is used to ensure that  the sets 
of terms with different values of p and j but  with the same values of I and n are 
kept  within the D o m a i n  of H. 

There is the difficulty of undetermined  coefficients similar to that ment ioned 
after (51). These coefficients are for example:  

(i) for 1 > 0, C~,_ ~_ s,0,z where s = 0, 4, 8 .... 
(ii) for l =  0, C 2 - 2  -~,o,o where s = 0, 4, 8 . . . .  
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The terms corresponding to these coefficients can be removed from (69) 
without the loss of completeness for the functions in (69). 

11. Variational Estimates for the Radial Limit 

The variational calculations so far undertaken have been small but accurate. 
These take the expansion in (17) to no more than thirteen terms. Following the 
series solution in Section 8 the general form (74) was used: 

tPo(l +dxrb +d2ra+d3r2 +d4rE +dsrarb +d6r2/rb +dvr]/rb +dSra/r b 4  2 +d9rb3 
2 Z (74) 

+ dlora, + dl 1 rb r, + dt2ra rb) 

For the variation of thirteen independent parameters including ( from (7) an 
eigenvalue of - 2.879028589 H was obtained. This compares with - 2.8790248 H 
obtained by Davis [10] from the variation of 66 independent parameters in a 
configurational interaction calculation of the sort mentioned before (46). Our 
value also provides a more precise upper bound than was obtained by Davis 
from the implementation of up to 66 terms and extrapolating for infinite terms. 
Not only is the eigenvalue from (74) the best estimate of the radial limit ever 
obtained but it also represents the most successful eigenvalue obtained in thirteen 
or so terms for an electron correlation problem. The error from (74) is probably 
less than 2 parts in 107. The result from 14 terms [11, 12] in the Hylleraas expansion 
for the Complete helium problem shows an error of 2 parts in 105. The high 
accuracy of the present calculation is due partly to the simplicity of the problem 
and partly to the technique of choosing terms which are important in a series 
solution. 

We obtain the six most interesting trial wave functions from (74) each 
characterised by a vector of coefficients which are a subset of d. Optimum results 
are tabulated below. These are the relevent d-subscripts; optimum ( values; 
m, the number of terms implemented by Davis which give a comparable eigenvalue. 

Table  1 

m ~ Subscr ipts  for d~ E~,in 

55 1.598 1, 2, 3 . . .7  -2 .879,023,10 H 
55 1.5941 1, 2, 3 . . .8  -2 .879,023,47 H 
55 L5132 1, 2, 3 . . .9 - 2.879,025,55 H 
66 1.4842 1, 2, 3. . .  10 - 2.879,025,93 H 
oe 1.4419 1, 2, 3. . .  11 - 2.879,027,31 H 
oe 1.5899 1, 2, 3 ... 12 -2 .879,028,59 H 

The coefficients dl to d 12  for the most accurate function are: 0.0918435727; 
-0.4126805604; 0.0269466033; 0.0046643072; -0.0354601186; 0.1679732815; 
0.0182867438; -0.0038330449; 0.0013156847; - 0.0111772241; -0.0122628367; 
0.0218323572. 



112 F, T. Newman: 

The accuracy of these results and those in (46) reflect favourably the con- 
vergence characteristics of (17) and (51). More extensive calculations need to be 
carried out. These should be well ordered so as to be extensible by extrapolation 
procedures. 

12. The Motion of  the Nucleus 

The helium three body problem has a feature resulting from the finite mass 
of the nucleus. (54) is replaced by: 

(H ~ + H' + H" - Eo) 7 j = 0 (75) 

where: 
H" = - p / M .  (~2/Ox 1 Ox2 + c~2/c~yl OY2 § ~2/~z 1 Oz2) (76) 

is the reduced mass of the electron. M is the mass of the nucleus. The atomic 
units of length and energy in (75), (76) are defined using the reduced mass of the 
electron [13]. 

The recursion formula for the helium three body problem is given in (77), (78). 
- (l - p) (l + p + 1) Cp,p_.,j,z = {terms on the right hand side of (72)} 

(77) 
- 21~/M. {terms in (78)} 

Cp + 1,p-.- 1 ,Ja + 1" (l + 1)/(2l + 3). (I 2 + 61 + n l + 3 n + 9 + p n - p2) 

- Cp+ 1,p-.-xj,z-1 . l / (2l  - 1) . ( -  1 z +41 + p 2  _ pn + In - 2 n -  4) 

- C p , p _ . _  1,j,~ + 1" ( l  + 1)/(2l + 3)- ((1 - p + n + 3) 

+ Cp,p_._  1,j,t- 1" 1~/(21 - 1). (l + p - n - 2) 

- Cp+ Lp-.,j,~+ 1"(I + 1) U ( 2 l  + 3).(l + p + 3) 

+ Cp+ 1,~_.,~,~_ 1" IU(21 - 1). (1 - p - 2) (78) 

+ C p + l , p - . - 1 , j + ~ a + l " ( l +  1)(j+ 1 ) / ( 2 l + 3 ) . ( l + p + 3 )  

+ C v + l , p _ . _ a , j + ~ a _ ~ . l ( j +  1)/(2/- 1 ) . ( - l + p +  2) 

+ l/(21 - 1). (2 Cp,p_. j ,>.  1 + (1 + 1)/(2l + 3). (2 Cp,p_. , j ,+ 1 

- I / ( 2 1  - 1). ((j + 1) Cp,p_._  1 , j +  1 , z -  1 

-- (1 -~- 1)/(21 § 3)" ( ( j  § 1) C p , p  _ n - 1 , j  + 1,1 + i 

An approximation for the two body helium problem may be obtained using (72). 
The expectation is that this may be refined by successive approximations in (77). 
Limiting values for Eo from (72) and (77) will be the eigenvalues for the helium 
two body and three body problems. 

13. Conclusions 

i) A method has been developed for the series solution of the two and three 
body problems in helium theoretical chemistry. The analytical form for the 
problems of radial and angular correlation has been derived. The convergence 
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of  the  so lu t ion  to  the rad ia l  Schroed inger  equa t ion  seems sat isfactory.  M o r e  of  
this series so lu t ion  remains  to  be inves t iga ted  numerical ly .  The  series so lu t ions  
for the SP, SPD,  etc. and  Comple t e  equa t ions  require  processing.  

(ii) This  work  requires  extens ion to  those  exci ted states of he l ium in which 
e lect rons  are  descr ibed  in different orbitals .  In  these cases the  space par t  of ~paoet 
f rom (2) is more  compl i ca t ed  than  for the g round  state and  o ther  states in which 
electrons are  pa i red  in the same orbi ta ls .  Such work  is to be car r ied  out  to facil i tate 
the  extens ion of present  techniques  to l i th ium for which @oet is still more  com- 
plicated.  

(ii) A n o t h e r  p r o b l e m  should  be tack led  as a pre lude  to l i thium. This is the 
p r o b l e m  of three  negat ive ly  charged  bosons  in the same l s  o rb i ta l  cent red  on  
the nucleus. 

(iv) W e  have made  some progress  with p rob lems  of  series so lu t ion  for Schroe-  
dinger  equat ions .  The co r r e spond ing  Ray le igh-Schroed inger  pe r t u rba t i on  equa-  
t ions a p p e a r  a para l le l  field of  invest igat ion.  

Acknowledgements. We gratefully thank Professor G. G. Hall and Professor J.W. Linnett for 
continuous encouragement without which this work would not have been completed. We thankfully 
acknowledge detailed criticisms of the final draft from Professor C. A. Coulson. 

References 

1. Snyder, L.C., Parr, R.G.: J. chem. Physics 34, 1661 (1961). 
2. Schwartz, C.: Physic. Rev. 126, 1015 (1962). 
3. Hirschfelder, J. O., Nazaroff, G. V.: J. chem. Physics 34, 1666 (1961). 
4. Coolidge, A.S., James, H.M.: Physic. Rev. 51,855 (1937). 
5. Dirac, P.A.M.: The principles of quantum mechanics, 4 th. Ed. p. 58. Oxford: Clarendon Press 

1958. 
6. Shull, H., LiSwdin, P.-O.: Physic. Rev. 30, (1959). 
7. Slater, J.C.: Quantum theory of atomic structure, Volume II, 1 st. Ed., p. 39. New York: Mc Graw- 

Hill Book Company, 1960. 
8. Fock, V.A.: Izvest. Akad. Nauk. S.S.S.R. Ser. Fiz. 18, 161 (1954). 
9. Fock, V.A.: Kgl. Norske Videnskab Selskabs. Forh. 31 (22), 23 (1958). 

10. Davis, H.L.: J. chem. Physics 39, 1827 (1963). 
11. Chandreskhar, S., Herzberg, G.: Physic. Rev. 98, 1050 (1955). 
12. Schwartz, C.: Physic. Rev. 128, 1146 (1962). 
13. Bethe, H.A,, Salpeter, E.E.: Quantum mechanics of one- and two-electron atoms, p. 166, Springer- 

Verlag 1957. 

Dr. F. T. Newman 
Computing Centre 
Trent Polytechnic 
Nottingham, England 


